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Abstract

The power of a double pendulum can be described as the power of the
oscillations at the fixed pivot expressed as torque and angular velocity
with the following equations:

9 ..
TPivotTorque — mOscMassTRadiuSOfosceAngAcc (1)

5 . .
PpivotPower = mOscMassTRadz'usOfoschngAccQAngVel (2)

We conclude that this power can be made useful, and has been done
o in a number of experiments (for example Milkovic covered in this
report). The Runge Kutta numerical method is used to solve the Euler
Lagrange equations for evaluation and simulation. Euler Lagrange ele-
gantly describes the force equilibriums and exchange of kinetic energy
between the pendulum masses. Mechanical load is then applied to the
system as a torque at the fixed pivot.

Without load, this is a pretty straight forward analysis. What we
find interesting is the magnitude of the reactive power in relation to
the initial kinetic energy of the system. However, when we add load
as a counter velocity torque on the fixed pivot we get very interesting
results.

Tload = /J/FactorOfInertiamOscMassrRadiusOfOsceAngVel (3)

When we extract torque as a function of inertia (velocity) it will of
course reduce angular acceleration, which in turn will reduce velocity
and consequently, kinetic energy. However our simulations show that
the system will transfer torque back to the outer pendulum and even-
tually reach an equilibrium and resonance at any load where no kinetic
energy is lost.
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From these simulations we conclude that it is possible to extract con-
siderably more energy from a double pendulum system than is used to
set the outer pendulum in motion initially. This is due to the fact that
rotation of the outer pendulum creates what we might call artificial
gravity, i.e. a constantly oscillating force acting as a torque on the
fixed pivot.
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1 The Physics

ny

Figure 1: double pendulum

First consider the well known Euler Lagrange equations for the double pen-
dulum.

(m1 +m2)l1é1 +m2[2é2c05(91 —92)+M2[29%Sin(91 —92)+g(m1 —l—mg)sz’néﬁ =0
(4)

mglgég + mgllélcos(Hl — 92) — mgllé%sin(Ql — 92) + mQQSin92 =0 (5)

To be able to solve these equations using the Runge Kutta method we elab-
orate the equations for the angular accelerations respectively: 6 and 6s.

i — —g(2m1 + ma)sinf; — magsin(0; — 2603)
l1(2mq + ma — macos(261 — 263))
28i’l’L(91 — 92)m2(9%l2 + é%lwos(@l — 92))
B l1(2m1 + mo — m2005(291 — 202))

(6)

_ 2sin(f; — 62)(9%l1(m1 + ma) + g(m1 + ma)cosh; + Gglgmgcos(ﬁl —62))

02 = l2(2my + ma — macos(261 — 263))
(7)

If we have a look at the Pivot Power we see that it is an oscillating power
that has a negative sign when velocity and acceleration are not aligned. In
plain words it means that we can not extract the Pivot Power directly when
it is negative. What we can do however is to extract the kinetic energy of the
velocity, which in turn will influence acceleration of both pendulum masses
according to Euler Lagrange.
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First we examine the system without load. The Runge Kutta method is
used to solving the equation numerically. We use the following input data:
my = lkg, mo = 0.1kg, I; = 0.2m, ls = 0.1m, 0y = 314 rad/s (i.e. the initial
speed of rotation of the outer pendulum is 50 Hz which equals an initial
kinetic energy of Ej = 50J).

We also assume rotation is in the horizontal level so that g = 0 and that
there is no friction. As we can se in the graph the outer pendulum is con-
stantly transferring energy to the inner pendulum mass by use of centrifugal
force and angular acceleration and vice versa. The result is that the the both
the pendulum masses are constantly accelerating/decelerating (oscillating),
without any more input of energy.

Power in Mechanical Oscillator
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Figure 2: Torque, velocity and reactive power at the fived pivot
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Mechanical Oscillator

Kinetic Energy Balance
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Figure 3: Kinetic energy balance.

We conclude that by setting the outer pendulum in motion with only Ej =
50J we continuously either accelerate or decelerate the inner pendulum mass
with a absolute power averaging ‘Ppwotpower| ~ 1800W with a maximum
of PrfazPivotPower =~ 3500W. What we want to emphasize here, is that this
is reactive power. Half of the time it is decelerating the mass, i.e. working
against velocity.
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2 Adding Mechanical Load to the Model

We now assume that the power that manifests itself as a oscillating torque at
the fixed pivot can be useful if we put a load on it, for example with a gen-
erator with resistive load. In theory all of the pivot torque could be useful,
but in reality it is probably not the case because of design and construction
issues. Thus the distinction between the useful m;,qq and my,echine I the
schematic below.
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Figure 4: Double Pendulum with extra load (mass or electromagnetic)

As we mentioned above, we can only extract work against the direction of
velocity. One way is to define the load as a counter velocity torque. In our
model we work with a load component defined as linear function of inertia
(i.e. velocity if the mass and radius are constant).

Tioad = —p(m1 + ma)l1 61 (8)
u is a factor of inertia (more or less friction), i.e. (%) We have used
this model to analyze how friction affects the system. With load as a linear
function of velocity we define the rate of deceleration this load has on the
System.

é oad) — 7 . 9 — —
l(l d) (m1+m2)l% /’Lll

At the end of each timestep in our simulation we compensate for the load
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with by altering the acceleration.

él(WithLoad) =01 + él(load) (10)

The limitations of the power extracted, is of course the kinetic energy of the
inner pendulum at the time. If the load is to high the pendulum will stop
(or actually oscillate each timestep in the simulation), and there will be no
more energy to extract. The outer pendulum will keep rotating, but that
will be of no good to us at that point.
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3 Simulations with Mechanical Load

As we showed above we have an oscillating torque and velocity at the fixed
pivot point. These are about 90 degrees out of phase which is shown in figure
2 above.

What we want to do now, is to add load to the system. The load is a
linear function of the velocity and can be viewed as large friction. We design
the load as a factor of inertia, where 1 = 0 Nms/kg is no load and p = 1
Nms/kg, is equivalent to a load with equal amount of inertia (think about
it as mass, since all other parameters are the same). Below is a simulation
with 1 =5 Nms/kg.
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Figure 5: Reactive power and load
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Mechanical Oscillator

Kinetic Energy Balance with load
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Figure 6: Kinetic energy balance with =5 Nms/kg load.

Below we show energy balance of the system with friction added on the outer
pendulum. Note that the load we add here is only a tiny fraction (1/250) of
the load added above on the inner pendulum. This is the effect of secondary
oscillation of the double pendulum.

Mechanical Oscillator

outer pendulum friction
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Figure 7: Kinetic energy balance with = 0.02 Nms/kg friction load.

There are a number of interesting observations to be made in the simulation
above.
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The average load is 137 W during the first second and about 106 W
during the first minute.

Kinetic energy is lost from the system during stabilization, but even
after one minute only about 6 J is lost.

If the same load is applied on the outer pendulum the pendulum would
loose more than 99% of its kinetic energy within 0.03 s. With p = 0.02
Nms/kg friction load 78% of the kinetic energy is lost within 0.3s as
can be seen above.

The system will stabilize and no more kinetic energy is lost
The load output will stabilize as well as the reactive power.

The Reactive Power will be net-negative with about (-)100 W.

This is of course fascinating, so we experiment by putting different load fac-
tors on the system and simulate 10s, with a 0.5 ms timestep.

#(Nms/kg) | Avg.Load(W) | React.Avg(W) | Min(W) | Max(W)
0 0 0 -3523 3523

1 24 -22 -3604 3378

5 110 -100 -3968 2895

10 216 -197 -4409 2370
20 428 -392 -5199 913
70 1449 -1328 -7813 454
150 2734 -2507 -9011 208
300 3702 -3395 -8194 78
350 3733 -3423 -7749 58
400 3688 -3381 -7296 44
600 3199 -2933 -5733 17
1000 2253 -2066 -3817 4

As we can see, we can put tremendous load on the mechanical oscillator.
The Load that is possible to extract peaks about 3700 W, which incidentally
is the about the same as the peak Pivot Power without load. When we
reach the peak output the system is resonating and all reactive power is
negative. This means that all reactive power is decelerating the pendulum
and all available accelerating power is extracted by the load. There is no
more power to extract, and the power starts to drop.

The COP will be almost infinite; after 60s only 14 J is lost
generating about 187 kJ.

10
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Mechanical Oscillator

with maximum load
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Figure 8: Mechanical Oscillator with maximum load
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4 The Case of the Milkovic Pendulum
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Figure 9: Milkovic Pendulum (from hitp://www.pendulum-lever.com)

The Milkovic pendulum is a handdriven pendulum that could be used to
pump water. We've been examining a pendulum with our numerical model
with the following input parameters related to figure 1: m; = 50kg, mo =
10kg, Iy = 0.5m, Iy = 0.3m, O = 2rad (i.e. we lift the outer pendulum before
we let it go, thereafter only affected by gravity).

Lets have a look at the characteristics of the movements, energy balance
and reactive power of the pendulum in a frictionless environment.

Milkovic Pendulum

pendulum movements, no load

—Angle 1 (rad)
—Angle 2 (rad)

time (s)

Figure 10: Pendulum movements

12
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Milkovic Pendulum

energy balance, no load
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Figure 11: Energy balance

The exchange of kinetic and potential energy is quite complex, but the total
energy of the system is constant.

Milkovic Pendulum

Pivot Power & Torque, no load
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Figure 12: Reactive power and torque at the fized pivot.
Now, lets try to simulate the Milkovic pendulum above with a load of pu =

10Nms/kg. That will equal a peak torque of about 200 Nm, which is quite
reasonable for a handdriven pump.

13
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Milkovic Pendulum

pendulum movements with mechanical load
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Figure 13: Pendulum movements with load, = 10 Nms/kg

As we can see, the inner pendulum movements (angle 1) is rather small in
relation to the outer pendulum. At the start of the simulation the amplitude
is about 0.24 rad, which with a radius of 0.5 m is 12 cm. This also seems
usable for a handdriven pump, maybe with some leverage.

Milkovic Pendulum

energy balance with load
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Figure 14: Energy balance of Milkovic pendulum with load

The pendulum has some really strange characteristics when the acceleration
and velocity are not aligned (i.e. different signs). We are actually adding
more kinetic energy to the outer pendulum than we are extracting by loading
the inner pendulum. The load actually accelerates the outer pendulum more
than it reduces velocity of the inner one. So at brief moments of time total

14
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energy is actually increasing even though we load the system.
Milkovic Pendulum

Mechanical and reactive load
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Figure 15: Power and torque extracted from a Milkovic Pendulum

The pendulum outputs on average about 60W with no input except for the
Ein, = 42 J used to lift the pendulum initially (2 rad). After 5 seconds the
output has dropped to about half due to the frictional aspects of the load
and 37J of kinetic energy is lost. However during these 5 seconds a total of
290J are extracted which equals a COP of 7.8.

If we have a closer look at the graphs we can se that about 17 J are
lost during the first two seconds (i.e. 3 oscillations), which means that if
we replace these, the pendulum will keep swinging with constant amplitude.
This is also the aim of pushing the pendulum-pump.

The result is that by adding 8.5 W of input power we continu-
ously generate about 60 W of output power. A COP of about 7.

Our conclusion is that these simulations are very consistent with the ex-

perimental results achieved by Milkovic. However, this could of course be
examined in much more detail.

15
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5 Generating Power

This report is however not so interested in handdriven pendulums as in the
possibility to build a generator that utilize the power in a automized manner
and generating electrical power at higher frequencies.

The interdependencies between the two pendulums continuously exchanging
kinetic energy as they oscillate is complex. The two pendulums transfer ki-
netic energy between themselves in both directions as described by the Euler
Lagrange equations earlier.
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Figure 16: Construction schematic

This is a simple schematic of a generator using what we’ve described. On
the input side we have a motor attached to a driving cogwheel, which ro-
tates the two unbalanced cogwheels (i.e. pendulums). These cogwheels are
synchronized so that all forces in the direction to and from the fixed axis is
cancelled out at all times, which will reduce the stress on the fixture. The
unbalanced cogwheels are mounted on a frame that transfers momentum to
the generator.

e (1), (2) and (3) are cogwheels, where (2) and (3) are unbalanced. They
can be considered pendulums.

e (4) is a motor/generator

16
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e (2) and (3) are mounted on a "frame" (5) which rotates frictionless on
the axis (6).

e The motor/generator is fixed on cogwheel (1) so that it can either drive
or receive energy/momentum to/from the system.

e The motor/generator is securely mounted on the floor/surroundings.
We then suggest the following line of thought.

1. The frame (5) with the cogwheels (2) and (3) is fixed so that it can
not rotate around axis (6).

2. The cogwheels are set in motion at the desired rotation speed with the
motor. The frame is still fixed.

3. The motor drive is disconnected, now the motor acts as a generator.
Still there is no load so the generator rotates frictionless.

4. The frame (5) fixation is disconnected sot that it now rotates/oscillates
freely around axis (6) and transfers momentum to the generator (4).
This might be technicaly challenging and maybe separation between
motor and generator might be preferable.

5. Load is added on the generator.

If the machine was frictionless we would be able to extract power continu-
ously. However this is of course not the case and a system for adding power
to overcome friction is needed. This is the tricky part because there is a
constant feedback of momentum coming from the pendulums (2) and (3) to
the driving cogwheel (1). This means that it will not be possible to add a
constant driving momentum on cogwheel (1) since this momentum simply
will work the machine in the wrong direction half of the time.

If we try to force the outer pendulum into a certain velocity, we will no doubt
disturb the inner pendulum as it transfer momentum back. Constant rota-
tion of the outer pendulum will simply not do. Therefore, we need to design
a system that pulses the correct amount of energy /momentum to the driving
cogwheel (1) with the right timing. Obviously this would be in the opposite
direction of friction, i.e. always in the direction of the current velocity and
acceleration. It’s actually a simple case of resonance. The analogy for this
is obvious; like pushing a playground swing, or for that matter, the Milkovic
pendulum.

17
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6 Building a Household Generator

If we, as an example, want to build a household generator we could use two
0.1 kg pendulums with a radius of 0.1 m, mounted on a frame with the radius
0.2 m. The pendulums are set in initial rotation at 50Hz. If the weight of the
cogwheels and levers are assumed to be positioned at the cogwheel /pendulum
center and is 1 kg per pendulum, the output will be approximately 7.2 kW
of AC power. The output power distribution (reactive and resistive) and
electrical output over a 10 ohm load, will look as follows.

Mechanical Oscillator

maximum power from a two pendulum system

power (W)

),1368=

time (s)

—Resistive power (W) —Reactive power (W)

Figure 17: Resistive and reactive power distribution
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Mechinical Oscillator

AC output over a 10 ohm resistive load
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Figure 18: Electical AC output schematic with 10 ohm resistive load

The equations for the output power is as follows. MmpjechLoad describes the
productive load/momentum, which is not the same as m; that is the com-
bined mass of the load and the unproductive weight of the cogwheels and
frame (i.e. machine).

2 I
P(t)output = MMechLoad" frame®’ AccO f Frame%SpeedO f Frame ( 1 1)

From Kirchoff we know that the voltage over a coil and a resistive load is
described as follows.

Li' +iRjpqq = 0 (12)

Consequently we get for the complete generator with electrical output.

P(t)output = L”/ = Z.2}2load = mMechLoadTfframgw;lccOfFramewSpeedOfFrame
(13)
The current 7,y correlates directly with the speed of rotation w and the
voltage Uoutput = Li’ correlates directly with the acceleration w’. And with
maximum load these are now in phase. We got pure AC power over our
resistive load.
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7 Conclusions

This document shows that it is possible to utilize the constant force acting
through the arm of a pendulum in motion. The force is a function of speed
of rotation (w) but results in an acceleration of mass, i.e energy. The energy
will manifest itself in the form of oscillations. We then make the connection
between these oscillations and the characteristics of AC current and realize
that it is exactly what we are looking for.

The power extracted is a function of the frequency of rotation by the
power of three (mr?w'w, Lii’ or Ri?). This also explains the extreme power
of vibrations, for example in buildings, bridges and other constructions. Even
minute imbalances in an engine gets the whole car to vibrate. And so on,
and so on.

At this point we would also suggest this method of analysis to examine
different solid state setups using transformers, coils and capacitors in com-
bination with AC or DC motor/generators and batteries.

We also show the theory behind the dynamics can be described using a
numerical solution (Runge Kutta) of the Euler Lagrange equations of the
double pendulum with added mechanical and resistive load. The centrifugal
force of the rotating/oscillating outer pendulum creates a property that can
be described as an artificial gravity, and it can be utilized using the method
described.

With this foundation of controlled oscillations directly converted into AC
power, simple motors can be built in any small village workshop everywhere
around the globe. Help can be supplied with construction and motor design
if needed. We emphasize the importance of design, and that the construction
for transfer of power need to be lightweight i relation to the weight of the
pendulum.

As our hero Nikola Tesla famously said: "If you want to find the secrets of
the universe, think in terms of energy, frequency and vibration."”
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