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Abstract 

In this paper, results of the simulation of a double pendulum with a horizontal pad are 

presented. Pendulums are arranged in such a way that in the static equilibrium, small pendulum 

takes the vertical position, while the big pendulum is in a horizontal position and rests on the 

pad. Motion during one half oscillation is investigated. Impact of the big pendulum on the pad 

is considered to be ideally inelastic. Characteristic positions and angular velocities of both 

pendulums, as well as their energies at each instant of time are presented. Obtained results 

proved to be in accordance with the motion of the real physical system.  

Double pendulum with pad refers to the two-stage mechanical oscillator that is invented, 

patented and constructed by Serbian inventor Veljko Milković (www.veljkomilkovic.com). 

Key words: double pendulum, nonlinear oscillations, impact  

 

1. Introduction 

Double pendulum is a mechanical system that is most widely used for demonstration of 

the chaotic motion. It is described with two highly coupled, nonlinear, 2
nd
 order ODE’s which 

makes is very sensitive to the initial conditions. Although its motion is deterministic in nature, 

sensitivity to initial conditions makes its motion unpredictable or ‘chaotic’ in the long turn. 

Double pendulum with a pad that constraints motion of the big pendulum is a 

mechanical system which is not analyzed in the literature. It is consisted of a small pendulum 

in a vertical position, connected to the big pendulum which takes horizontal position and rests 

on the pad in the state of static equilibrium. When the small pendulum is excited to oscillate, 

big pendulum is lifted and moves to the maximum point and then goes back to original 

position where hits the pad. Experiments with the real system seemingly showed that energy 

produced by the impact of the big pendulum is somehow larger than the energy required for 

maintaining the oscillations. It is well known that this is not possible in the gravitational field, 

where conservative forces act. Therefore, model for this system was developed and simulated 

in order to show the discrepancy in motion predicted by simulation and the real motion. 

mailto:bojanpetkovic@yahoo.com
http://www.veljkomilkovic.com/
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2. Motion description 

Double pendulum with pad is shown in Fig.1. System consists of: (i) the big pendulum 

(K2) which can rotate around its axis (O2) attached to the construction support, (ii) the small 

pendulum (K2) with its axis on the big pendulum (O1) and (iii) the horizontal pad. In the state 

of static equilibrium, small pendulum takes the vertical position ( 01 =θ ), and big pendulum 

takes the horizontal position (
2

2

π
θ = , Fig. 1a) and rest on the pad. 

 

Figure 1. Characteristic positions of the double pendulum with pad during one half oscillation 

 

When small pendulum is taken out of the equilibrium position and released 

( 0
0

11 <= θθ , Fig.1b) it starts its motion toward equilibrium position. Angle 1θ  is being 

increased (decreases in its absolute value) so that vertical component of the small pendulum 

weight (G1,v, Fig.2) increases. At the same time, vertical component of the centrifugal force, 

Fc,v, is increased. At the moment t1, sum of these two forces gives momentum 1

2

F

O
M  that is 

equal to the momentum of the big pendulum 2

2

G

OM . In that instant, big pendulum is lifted of the 

pad (Fig. 1c) and is being moved upward. After 01 =θ  is reached, vertical forces of the small 

pendulum are decreasing and big pendulum slows down reaching the maximum position in the 

moment t2 (Fig.1d). Big pendulum starts moving downward while small pendulum is slowing 

down. At the moment t3, big pendulum hits the pad (Fig.1e) and we assume ideally inelastic 

impact there. At the moment t4, small pendulum reaches maximum position and stops (Fig. 1f). 

Period from t0 to t4 is called one half-oscillation.  
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3. Mathematical models 

One half-oscillation period can be divided into three characteristic periods: (i) t0 to t1, 

only small pendulum is in motion, (ii) t1 to t3, the whole system is in motion and (iii) t3 do t4, 

only small pendulum is in motion. Mathematical model of a single pendulum is needed for 

periods (i) and (iii), double pendulum model is required for period (ii). It is also necessary to 

know time instants t1 and t3 when motion is switched from single to double pendulum and vice 

versa. From the condition that momentum of forces are equal 2

2

1

2

G

O

F MM
O

= , time t1 is 

determined. Condition απθ −= 22  (Fig.3) determines time of the impact t3. It is also 

necessary to determine the change in angular velocity of the small pendulum due to the impact.  

Time t4 , when the small pendulum stops is calculated from the condition that angular 

velocity of the small pendulum is equal to zero.  

 

3.1 Physical pendulum model 

Mathematical model of the physical pendulum is represented by the 2
nd
 order ordinary 

differential equation, 

0)sin( 1
1

1

1

=⋅
⋅⋅

+ θθ
OJ

bgM&&                                                      (1) 

with initial conditions, 

0

11

0

11 )0(,)0( θθθθ && ==                                                      (1a) 

where M1 is pendulum mass, b is 11CO  and 
1O

J  is moment of inertia with respect to axis O1. 

This 2
nd
 order system can be readily transformed into the system of two first order ODE’s. 

Making use of the substitution, 

1110 , θθ &== vv                                                               (2) 

we get ODE system with the new initial conditions, 

1
0 v

dt

dv
=                                                                    (3) 

)sin( 0
11

1

v
J

gbM

dt

dv

O

−=                                                     (3a) 

0

11

0

10 )0(,)0( θθ &== vv                                                      (3b) 
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3.2 Force momentums 

Degree of generality to which analysis is confined to is presented in Fig.2. In general 

case, point O2 is out of the big pendulum axis of symmetry, and point O2 doesn’t belong to the 

line O2C2. These generalities allow investigation of influence of positions of points O1 and O2 

on the characteristics of the system. Limitation that point O1 lies on the axis of symmetry is 

kept since it is not of great importance in this analysis. 

 

 

Figure 2. Forces at the moment when big pendulum is lifted of the pad 

 

Characteristic points with forces acting upon them are presented in Fig. 2. It is needed 

to know the moments in point O1 relative to point O2 and moment in the point C2 relative to the 

point O2. Weight of the small pendulum 1G
r

 can be represented with component OG ,1

r
 along the 

11CO  axis and component tG ,1

r
 that is tangential to the curved path ( )cos( 11,1 θ⋅= GG O , 

)sin( 11,1 θ⋅= GG t ). Centrifugal force that act along the axis 11CO  is bMFc ⋅⋅=
2

11 θ&  and is 

summed up with force OG ,1  to give total force at the point O1, Oc GFF ,11 += . Moment of the 

force F1 with respect to axis O2 is, 

LFM
F

O ⋅−⋅= )cos( 11
1

2
γθ  (since it is 0,01 >< γθ ),                                (4) 

and force momentum of the big pendulum with respect to O2 is, 

aGM
G

O ⋅⋅= )cos(2
2

2
α                                                            (5) 

So, change in the motion regime from small pendulum to double pendulum occurs when the 

following condition is satisfied, 

L

a
gMF ⋅

−
⋅=

)cos(

)cos(

1

21
γθ

α
                                                         (6) 
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Orientation of angles alfa and gama is denoted on the figure. Relations (4) and (5) are 

indepenent of the 1θ , α or γ signs. 

 

3.3 Double pendulum model 

Model for the double pendulum is needed for the simulation during the second part of 

the half-oscillation period. For the sake of simplicity, Fig.3 contains only characteristic points 

of both pendulums. 

 

Figure 3. Characteristic points of the double pendulum with velocity vectors. 

Dash line represents the axis of the big pendulum 

 

Lagrange equations (accumulation term equals to zero) are, 

0
11

=
∂

∂
−

∂

∂

θθ

LL

dt

d
&

                                                        (7) 

0
22

=
∂

∂
−

∂

∂

θθ

LL

dt

d
&

                                                       (8) 

Lagrangian is, 

Π−= KEL                                                              (9) 

Horizontal line through the point O2 is accepted as reference level for the potential energy. 

Potential energy of the system is sum of potential energies of both pendulums, 

 

443442144444 344444 21
21

)cos())cos()cos(( 22121

ΠΠ

−−+=Π θθβθ gaMbLgM                            (10) 

Kinetic energy of the system is, 

43421444 3444 21
2

2

1

11

2

2

2

1

2

1
2

1

2

1

2

1

Ek

O

Ek

CCK JJvME ωω ++=                                            (11) 
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where 
1C

J  is the small pendulum moment of inertia with relation to point C1 and 
2O

J  is the big 

pendulum moment of inertia with respect to O2. Velocity at the point C1 is the sum of two 

velocities 1

111

O

COC vvv += , 

4444 34444 21444444 3444444 21
1
1

1

1

1

1

1

111
)sin()cos()sin()cos( 1122

O
C

O v

O

C

O

C

v

OOC jvivjvivv ⋅−⋅+⋅++⋅+−= θθβθβθ .            (12)  

After introducing 21
θ&LvO =  and 1

1

1
θ&bv

O

C =  we get, 

))sin()sin(())cos()cos(( 112211221
θθβθθθθβθθ &&&& bLjbLivC −+⋅+++−⋅=          (13) 

)sin()sin(2)(sin)(sin

)cos()cos(2)(cos)(cos

21211

22

1

2

2

22

2

2

21211

22

1

2

2

22

2

22

1

βθθθθθθβθθ

βθθθθθθβθθ

+−+++

++−++=

&&&&

&&&&

LbbL

LbbLvC
           (14) 

))(cos(2 2121

2

1

22

2

22

1
βθθθθθθ +−−+= &&&& LbbLvC                                    (15) 

Using relations 11 θω &= , 22 θω &=  and the expression for moment of inertia 2

222
aMJJ CO +=  we 

get the expression for the kinetic energy, 

2

2

2

2

2

12121

2

1

22

2

2

1 )(
2

1

2

1
)))(cos(2(

2

1
21

θθβθθθθθθ &&&&&& aMJJLbbLME CCK ++++−−+=     (16)  

After introducing expressions for Ek i Π in Lagrangian, we have, 

[ ]
)cos())cos()cos((

)(cos(2)()(
2

1

22121

21211

2

21

22

21

2

1 21

θθβθ

βθθθθθθ

gaMbLgM

LbMaMJMLJbML CC

+−+−

−+−−++++= &&&&
     (17)  

Partial derivatives in the Lagrangian are, 

))(cos()( 2121

2

11

1
1

βθθθθ
θ

+−−+=
∂

∂ &&
&

LbMJbM
L

C                            (18) 

))(cos()( 2111

2

1

2

12

2
2

βθθθθ
θ

+−−++=
∂

∂ &&
&

LbMaMLMJ
L

C                       (19) 

)sin()(sin( 1121211

1

θβθθθθ
θ

gbMLbM
L

−+−=
∂

∂ &&                              (20) 

)sin()sin())(sin( 222121211

2

θβθβθθθθ
θ

gaMgLMLbM
L

−+++−−=
∂

∂ &&            (21)  

))(sin())(sin())(cos()(

)))((sin())(cos()(

211

2

2211212112

2

11

2121122112

2

11

1

1

1

βθθθβθθθθβθθθθ

θθβθθθβθθθθ
θ

+−−+−++−−+=

=−+−++−−+=
∂

∂

LbMLbMLbMJbM

LbMLbMJbM
L

dt

d

C

C

&&&&&&&

&&&&&&&
&  

 (22) 
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))(sin())(sin())(cos()(

)))((sin())(cos()(

21121211

2

12111

2

1

2

12

2121112111

2

1

2

12

2

2

2

βθθθθβθθθβθθθθ

θθβθθθβθθθθ
θ

+−−+−++−−++=

=−+−++−−++=
∂

∂

LbMLbMLbMaMLMJ

LbMLbMaMLMJ
L

dt

d

C

C

&&&&&&&

&&&&&&&
&

 (23) 

After using these expressions in the Lagrange equations, we get, 

0sinsincos 11211

2

22112

2

11 1
=++−−+−−+ )(θgbMβ))(θ(θLbMθβ))(θ(θLbMθ)bMJ(θ

CBBA

C 321321
&

321
&&

43421
&&  (24)  

)sin(sinsincos 2122211

2

12111

2

2

2

12 1
βθgLM)(θgaMβ))(θ(θLbMθβ))(θ(θLbMθ)aMLMJ(θ

FEBBD

C +−++−++−−++
321321321

&
321

&&
444 3444 21

&&

 

(25) 

Using the following expressions,  

glMFgaMEaMLM
C

JD

gbMCLbMBbM
C

JA

1
;

2
;2

2
2

1
1

1
;

1
;2

1
1

==++=

==+=

                           (26) 

equations become more readable, 

A

θC
θ

A

β)(θθB
θ

A

β))(θ(θB
θ

)
1

sin(2
2

)
21

sin(

2
21

cos

1
−

+−
+

+−
= &&&&&                  (27) 

D

θE

D

βθF
θ

D

β)(θθB
θ

D

β))(θ(θB
θ

)
2

sin()
2

sin(2
1

)
21

sin(

1
21

cos

2
−

+
+

+−
−

+−
= &&&&&      (28) 

In terms of angular accelerations ( 1θ&&  i 2θ&& ), these equations are linear and can be linearly 

combined in the equations where each one of them shows up independently. Substituting 

second equation into the first and first equation into the second, the following system is 

obtained,  



















−+−+++−−

−⋅+−+
+−

−

+−−

=

)
1

sin()
21

cos()
2

sin()
21

cos()
2

sin(

...2
2

)
21

sin(2
12

))
21

(2sin(2

)
21

(2cos
2

1
1

θCβ)(θθβθ
D

FB
β)(θθθ

D

EB

θβ)(θθBθ
β)(θθ

D

B

β)(θθ
D

B
A

θ

&&
&&

 (29) 

 



















+−−++−

−⋅+−−
+−

+−−

=

)
21

cos()
1

sin()
2

sin()
2

sin(

...2
1

)
21

sin(2
22

))
21

(2sin(2

)
21

(2cos
2

1
2

β)(θθθ
A

CB
βθFθE

θβ)(θθBθ
β)(θθ

A

B

β)(θθ
A

B
D

θ

&&
&&  

 (30) 

Using these expressions, 

23
,

22
,

11
,

10
θθθθ && ==== uuuu                                              (31) 
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we get the equivalent ODE system, 

1
0 u

dt

du
=                                                                 (32) 



























−

−+−+++−−

−⋅+−+
+−

−

+−−

=

)
1

sin(

...)
21

cos()
2

sin()
21

cos()
2

sin(

...2)
3

()
20

sin(2
12

))
20

(2sin(2

)
20

(2cos
2

11

θC

β)(θθβθ
D

FB
β)(θθθ

D

EB

uβ)(uuBu
β)(uu

D

B

β)(uu
D

B
A

dt

du

 (33) 

3
2 u

dt

du
=    (34) 



















+−−++−

−⋅+−−
+−

+−−

=

)
20

cos()
0

sin()
2

sin()
2

sin(

...2
1

)
20

sin(2
32

))
20

(2sin(2

)
20

(2cos
2

13

β)(uuu
A

CB
βuFuE

uβ)(uuBu
β)(uu

A

B

β)(uu
A

B
D

dt

du

 (35) 

0
2

)0(3,0
2

)0(
3

,0
2

)0(
2

,0
1

)0(1,0
1

)0(
1

,0
1

)0(
0

θθθθθθ &&&&&& ======
dt

du
uu

dt

du
uu       (36) 

 

3.4 Impact 

It is assumed that the impact on the pad is ideally inelastic. This is in accordance with 

intention to determine the maximum energy that can be transferred to the pad with the impact. 

Until the impact, velocity of the small pendulum is vector sum of two velocities 
1O

v  and 1

1

O

Cv . 

At the moment of impact, velocity of the point O1 becomes equal to zero, and one part of he 

velocity 
1O

v  which is )cos(
1

δOadd vv =  becomes additional angular velocity of the small 

pendulum
b

vadd
add =,1ω .  The other part of that velocity, )sin(

1
δOaxis vv = , is transferred to the 

energy of impact in the point O1 with the intensity 
2

1
2

1
axisaxis vME = . Although one part of this 

energy is lost, other part which equals to ( )22

1 )(sin
2

1
1

δOtrans vME =  is transferred to the pad. 

Angle δ= ),( 1 γθf  determines what part of the velocity will be transferred into add,1ω  at the 

moment of impact. Fig.4a-c show double pendulum in the moment of impact for all four 

combinations of the angles 1θ  i γ. 
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Figure 4. Angle δ at the moment of impact 

 

For each of the cases presented in Fig.4, angle δ is separately determined. Results are presented 

in Table 1.  

 

Table 1. Expressions for δ 

No. Angles γθ ,1  Angle δ  Expression 

a)  
0,01 >< γθ  γθ

π
δ −−= 1

2
 γθ

π
δ −+= 1

2
 

b)  
0,01 >> γθ  γθ

π
δ +−= 1

2
 γθ

π
δ +−= 1

2
 

c)  
0,01 << γθ  γθ

π
δ +−= 1

2
 γθ

π
δ −+= 1

2
 

d)  
0,01 <> γθ  γθ

π
δ −−= 1

2
 γθ

π
δ +−= 1

2
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4. Numerical procedure 

General description of the numerical procedure follows. Code is given in the appendix. 

 

1) Integrate ODE system for the small pendulum until the condition (6) is satisfied. It 

is equivalent to the condition that vertical component of the force F1 is 

L

a
gMF v ⋅⋅=

)cos(

)cos(
2,1

γ

α
. This condition is used for determination of the time instant 

t1. Initial guess 00

1 =t  ensures convergence.  

2) Integrate ODE system for the double pendulum until big pendulum hits the pad. 

Time instant t3 is determined from the condition α
π

θ −=
2

1 .  

3) Determine new initial conditions for the small pendulum. Calculate energy of 

impact as kinetic energy of the big pendulum plus transferred energy Etrans. 

4) Integrate ODE system of the small pendulum until time t4 that is determined from 

the condition 01 =ω . 

 

Runge Kutta method of the 4
th
 order with adaptive step size is used for integration of the ODE 

system. Nonlinear equations were solved using Newton’s method. 

 

5. Simulation results and discussion 

Dimensions of the pendulums are given in Table 2. Material is iron of density 3/7860 mkg=ρ . 

Table 2. Pendulum dimensions, moments of inertia 

 x [m] y [m] z [m] Mass [kg] 
CJ [kg⋅m2

] 

K1 0.3 0.08 0.05 7.546 0.061 

K2 0.6 0.1 0.05 23.58 0.727 

 

Initial conditions used are 0,90,60 0,20,10,20,1 ===−= ωωθθ oo , oo 0,0 == γα  

Table 3. Results 

tmax Eimpact Etot,before Etot,after 

0.488s 0.123J -9.253J -9.308J 

 

One half-oscillation takes around 0.5s. 
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It seems that duration of the half-oscillation, required initial condition for the small pendulum 

(-60deg) and amplitude of the big pendulum are in quite good accordance with the behavior of 

the real, though a bit different physical system (Figs.5 and 6).  

0 0.1 0.2 0.3 0.4 0.5

2

0

2

4

6

2.5 π⋅

π−

θ 1

ω 1

θ 2

ω 2

0.520 t  

Figure 5. Positions and velocities of the pendulums 

 

0 0.2 0.4

1.57

1.58

1.585

1.565

θ 2

0.520 t  

Figure 6. Closer look at the big pendulum behavior 

 

Total energy of the double pendulum after the impact is lower than the total energy 

before the impact (-9.308<-9.253) which is reasonable (Fig.7). But when the transferred energy 

of impact is added (0.123J), the sum exceeds total initial energy (-9.253J). This is probably due 

to the incorrect calculation of the angular velocity add,1ω , so further investigation of this term 

should be the next step in validating this simulation. 
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0 0.1 0.2 0.3 0.4 0.5
15

10

5

0

5

10
5.547

14.811−

Ep 1

Ep 2

Ek 1

Ek 2

Etot

0.520 t  

Figure 7. Potential, kinetic and total energy 

 

 

6. Conclusions 

Model for the double pendulum with pad was developed and simulated. Simulation 

results look reasonable and similar to the behavior of the real system. However, jump in the 

total energy after the impact has to be reconsidered and velocity that is added to the small 

pendulum after the impact must be analyzed further. 
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